一、有色宝石的颜色及呈色机理

在赋予宝石美丽的诸多因素中,颜色是一个主要的因素,甚至是唯一的因素。了解颜色的成因,对有色宝石的鉴定、合成和改善均具有一定的指导意义。

一、颜色的定义

有色宝 有色宝长江有色是什么

颜色是光对人眼的色刺激,经大脑翻译所产生的结果。要产生颜色,必须要有光源、与光作用的物体及接受光的人眼和解释它的大脑,这3个条件缺一不可。

颜色是具有一定波长的电磁波。宝石的颜色是宝石对400~700nm的可见光波进行选择性的吸收后,透射或反射出的光波的混合色。颜色是人眼对可见光的一种反应,但由于个体的差异,人眼可能观察到的可见光的波长范围可扩展为380~760nm。不同的波长对应着不同的颜色,表1-3-1列出了颜色和波长的对应关系。

表1-3-1颜色与波长的对应关系

当白光到达宝石的表面时,一部分被反射,另一部分被折射进入宝石。如果没有反射或折射的光波被吸收,宝石将是无色的。某种波长被吸收(称为选择性吸收)后,进入人眼的光波的混合色,即是我们所见的颜色(也称为选择性透过)。

二、致色元素

绝大多数宝石产生选择性吸收的原因是因为含有某些元素,它们既可以主要化学成分存在,也可以微量元素存在,被称为致色元素,其中最主要的是钛、钒、铬、锰、铁、钴、镍、铜等过渡族金属元素。根据宝石的化学成分和构造特征可将颜色分为自色、他色和假色,相应的宝石分为自色宝石和他色宝石。

1.自色

致色元素以宝石的主要化学成分出现,且颜色是恒定的,这种宝石叫自色宝石。如菱锰矿总是呈红色—橙黄色,孔雀石总是呈绿色,蓝铜矿总是呈蓝色。表1-3-2为常见自色宝石的颜色及致色元素。

2.他色

组成宝石的主要元素不产生特征的颜色,因微量元素而致色的宝石称为他色宝石。他色宝石纯净时,为无色透明或不透明时呈现白色,当混入其他元素时,呈现各种不同的颜色。如刚玉,纯净时是无色的,当有微量的铬代替铝时,就呈红色(红宝石),若含铁和钛则呈蓝色(蓝宝石)。表1-3-3为常见的他色宝石及其致色元素。

表1-3-2自色宝石的颜色和致色元素

3.假色

假色是由于宝石内部存在一些细小的平行排列的包裹体、出溶片晶、平行解理等特殊结构,与光发生物理光学效应产生的颜色,如晕彩、锖色、变彩等。

表1-3-3他色宝石的颜色和致色元素

三、有色宝石的呈色机理

有色宝石颜色的成因是由其化学成分和晶体结构所决定的。呈色机理有如下几种:

1.过渡金属元素的内部电子跃迁

晶体场理论认为,原子是由原子核及围绕核的许多沿确定轨道层运动的电子所组成,电子的运动状态受原子内部及相邻原子之间的吸引力控制。在过渡金属族元素中,当白光射入宝石的晶格中时,晶体中的过渡金属元素的d电子就会被能量相同的光波激发,从基态跃迁到能量较高的轨道上,激发电子所需要的能量在1.2~3.7eV之间,与可见光的波长范围400~700nm中的某些波段对应。因此,当宝石中的电子跃迁时,就会对可见光进行选择性的吸收,而透射或反射出的光波的混合色就是宝石的颜色。

除了过渡金属元素(具有3d,4d轨道)内部d-d电子跃迁可以产生颜色外,某些镧系、锕系元素(具有4f,5f轨道),也可产生f-f电子跃迁使宝石呈色。由过渡金属离子引起的d-d跃迁呈色的宝石品种列于表1-3-4中。

表1-3-4过渡金属离子引起的宝石致色

下面以红宝石、变石、祖母绿中Cr3+为例来解释宝石d-d跃迁的呈色机理(图1-3-1)。

这3种宝石的致色离子均为Cr3+,根据晶体场理论,Cr3+的d轨道在八面体配位场中可以分裂为3个能级,即4A2,4T2,4T1,Cr3+的3个d电子都处于能量较低的4A2(基态)轨道中,并且全部为单电子。在可见光的照射下,d电子分别发生从4A2→4T2,4A2→4T1的跃迁。由于3个宝石的化学成分不同,引起配位场构型畸变,因而3个宝石在跃迁过程中吸收的能量各不相同。红宝石(Al2O3)中d-d跃迁吸收的能量分别为2.25eV和3.02eV,对应于绿—黄光(551nm)和蓝紫色(410nm),透过的是大部分红橙光和部分蓝光,因而红宝石最终呈现带紫色调的红色;祖母绿吸收了2.04eV和2.92eV能量,分别对应吸收的颜色波长为608nm的橙黄色光和425nm的蓝紫色光,透过光波的混合色组成了祖母绿的绿色;变石(BeAl2O4)化学式介于红宝石与祖母绿之间,Cr3+与周围配位体的电场强度低于红宝石,高于祖母绿,在电子跃迁过程中吸收的能量分别为2.16eV和2.98eV,介于红宝石和祖母绿之间,对应吸收的波长分别为575nm的橙黄色光和416nm的蓝紫色光,透过红光和蓝绿光。因变石透过的红光和绿光基本上处于平衡状态,宝石最终呈现何种颜色取决于光源。由于日光及色温较高的日光灯蓝绿色成分偏多,变石显示绿色,而在红光成分较多的白炽灯或烛光下则显示红色。

图1-3-1 Cr3+在红宝石、变石及祖母绿中的d-d电子跃迁示意

2.元素离子间的电荷转移

分子轨道理论认为,当原子形成分子后,电子的运动不再局限于单一的原子轨道,而是在相应的分子轨道中运动。当两个或两个以上的原子组成分子后,各原子轨道按照一定的规则组成分子轨道,不同原子内的电子可从一个原子轨道跃迁到另一个原子轨道上,这种作用叫电荷转移。在电荷转移的过程中,要吸收能量,所需的能量正好和可见光的某些光波相对应,而使宝石呈色。这种作用主要表现为氧化-还原过程。

元素离子间的电荷转移可以发生在同种或不同种金属离子与金属离子之间,前者又称为同核原子价态之间的电荷转移,后者称为异核原子之间的电荷转移,如宝石中常见的Fe2+-Fe3+/Fe3+-Fe2+;Ti4+-Ti3+/Ti3+-Ti4+;Mn2+-Mn4+/Mn3+-Mn3+;Fe2+-Ti4+/Fe3+-Ti3+;也可以发生于非金属离子-金属离子之间,如宝石中有O2-→Fe3+,O2-→Cr6+,O2-→V5+等;还可以是非金属-非金属间的转移。表1-3-5列出了电荷转移致色的宝石品种及颜色。蓝宝石的蓝色就是Fe2+-Ti4+异核原子价态之间的电荷转移吸收了红光和黄光,从而使蓝宝石呈蓝色。

表1-3-5电荷转移引起的宝石颜色

3.色心

有些宝石矿物的颜色是由晶体缺陷导致的,称为色心致色。色心可分为两种类型:电子色心和空穴色心。

(1)电子色心(F心)

是由电子占据晶体结构中的阴离子空位引起的色心。当一个电子被捕获到晶体中在正常情况下不存在电子的位置上时,该电子具有占据不同能级和吸收光线的能力,其产生颜色的方式与过渡金属的未配对电子相似。如萤石的化学式为CaF2,由于Ca2+含量过高和受放射性辐照影响,造成F-缺位而为电子占据,形成电子色心,该色心吸收黄绿光波,而使萤石呈紫色。

(2)空穴色心(V心)

是由于阳离子在晶体结构中缺位而引起的色心。当一个本该存在电子的位置上缺少一个电子时,就留下了一个空穴和一个能吸收光的未配对电子。烟晶(SiO2)中当Si4+被Al3+﹢H+(或Na+)取代后,结构中的电中性被破坏,受辐照后,Al3+邻近的O2-的1个价电子被激发离开其轨道,出现未配对电子,形成空穴色心,产生紫外—可见光范围的吸收,使之呈烟色。

若用X射线或γ射线辐照,受弱控制的电子就会被移位,留下空穴和能产生颜色的未配对电子。为产生色心所需的辐照,可靠自然界少量的放射性矿物在漫长的时间内完成,也可人为地使用X射线、γ射线或离子束来完成,如蓝色托帕石、紫晶等就是通过辐照而呈色的。

4.能带间的电子跃迁呈色

能带理论认为:晶体中的电子不束缚于某个原子,而为整个晶体所共有,并在整个晶体中作周期性共有化运动。在宝石晶体中,各个原子的相似轨道能级发生相互重叠而构成各个能量范围不同的能带,电子按能级高低分别处在各能带中。能带又可分为:①导带(空带),由未填充电子的能级所形成的一种高能量带;②带隙(禁带):为价带最上部的面(又称费米面)与导带最下部面之间的距离,禁带宽度(用ΔEg表示)随矿物键性的不同而不同;③价带(满带),由已充满电子的原子轨道能级所构成的低能量带。处在价带顶部的电子当受到大于ΔEg的外来能量(可见光)激发时,可以跃迁到导带上去,吸收可见光能量而使晶体产生颜色。宝石的颜色取决于电子从价带向导带跃迁时所吸收的辐射能。当ΔEg在可见光能量范围之内时,能量大于ΔEg的被宝石吸收,能量小于ΔEg的透过宝石,而使宝石呈色。

5.物理因素致色

由于包裹体、特殊结构、双晶、裂隙等与可见光波发生干涉、衍射、散射等作用而使宝石呈现的颜色,为物理因素致色。

1)干涉:当两条光线相遇叠加沿同一路线传播时,由于彼此的位相原因造成光波相互增强或抵消,其效果是产生非纯正光谱色。这种干涉色常见于有裂隙、薄层包裹体或具不同物质薄层结构的材料,如晕彩石英。

2)衍射:衍射为光干涉的一种特殊类型。产生衍射的宝石具有规则的不同折射率的交替层堆积,当白光与之相互作用时发生光波的定向传播,其效果是产生纯正光谱色,如欧泊的变彩。

3)散射:宝石材料内部结构不规则或粒度超出衍射限定范围(约100~400nm)或含直径大于可见光波长的包裹体、微晶微裂隙或气泡时,入射光线因传播介质的不均匀性造成光在不同方向上的反射而呈现颜色,如普通蛋白石、乳石英等。

4)包裹体致色:很多宝石会因机械地混入了其他矿物包裹体而呈现颜色,如赤铁矿使玉髓呈红色(肉红玉髓),石英岩中的铬云母包裹体使石英岩呈绿色等。

四、颜色的三要素

在色度学中用色调、饱和度、明度来表示颜色的特征。非彩色系列不具有色调和饱和度特征,它们仅有明度的变化。对于彩色系列中的每一种颜色,均有色调、明度、饱和度3个特征,称为表征颜色的三要素。

1.色调(色相)

指彩色的类别,如红、橙、黄、绿、青、蓝、紫。彩色宝石的色调取决于光源的光谱组成和宝石对光的选择性吸收。色调通常用主波长λd来表示。

2.饱和度(纯粹度或彩度)

指彩色的纯净度或鲜艳程度。彩色宝石的饱和度取决于宝石对可见光光谱选择性吸收的程度,可见光光谱中的各单色光饱和度最高,饱和度值为1,复色光(即白光)的饱和度最低,其值为0。当宝石仅对可见光某一很窄波段的光反射或透过时,颜色饱和度就高,宝石就鲜艳。通常用饱和的彩色光与白光的相对含量来表示。

3.明度(亮度)

指彩色的明亮程度。宝石颜色的明度取决于宝石对光的反射或透射能力。宝石对光的反射比或透射比越高,宝石的明度越大。通常用宝石的视觉透射率来表示。颜色的明亮程度不仅与宝石的折射率、光泽及加工工艺有关,而且与宝石的表面光洁度和颜色深浅有关。

五、有色宝石颜色的表征

有色宝石颜色的观察和描述常带有一定的主观性,为了客观、有效地传达色彩,目前广泛使用孟塞尔表色系统、国际照明委员会CIE色度学系统以及GemDialogue或GemSet比较系统来表征有色宝石的颜色,但目前国际上并无任何统一的标准。

图1-3-2孟塞尔色立体外形图

1.孟塞尔表色系统

孟塞尔表色系统将颜色的三要素用三维坐标立体形式表示(图1-3-2)。该系统水平剖面上的各个方向,圆周被分为10个部分,代表10种孟塞尔色相;孟塞尔彩度以离开中央轴的距离表示,从中心至边缘,愈远则彩度愈大;孟塞尔色立体的中心轴,表示明度,代表从底部黑色到顶部白色的白黑系列的明度等级,中间明度划分1~9个等级。彩色系列的明度以离开基底平面高度相等的灰色来度量,共分为11个等级。颜色标定方法是:HV/C,其中符号H、V、C分别代表色相、明度和彩度。

2.1931CIE-XYZ表色系统

CIE标准色度系统是由国际照明委员会(简称CIE)规定的标准色度系统,是以颜色匹配实验为基础,设定每一种颜色都能用3个选定的原色按适当的比例混合而成。在颜色匹配实验中,常选用红(700nm)、绿(546.1nm)、蓝(435.8nm)作为三原色,将与待测颜色匹配时所需的三原色的数量,称为三刺激值,用X、Y、Z表示。三刺激值的单位选用色度学单位,对于匹配等能光谱色的三原色数量,称为光谱三刺激值。这是一种定量测量颜色的方法,通过紫外-可见光分光光度计测量宝石在可见光范围400~700nm不同波长的三刺激值,可借助于计算程序,方便地计算出其色度坐标(x,y,z):

有色宝石学教程

3个色度坐标中有一个是不独立的,因而可用x、y直角坐标系来表示各种颜色色品。

图1-3-3为CIEx、y色品图,图中(X)表示红原色,(Y)表示绿原色,(Z)表示蓝原色,为假想的三原色;图中马蹄形曲线为光谱轨迹,由光谱色的坐标点连成,凡是马蹄形曲线内部的所有坐标点(包括曲线本身)都是物理上能实现的颜色。

图1-3-3 CIEx、y色品图

宝石学中,我们先在CIEx、y色品图上标出光源和宝石的色度坐标,就可知道宝石在该光照下的色调λd和颜色饱和度。如图1-3-3所示,O点为白点(光源的坐标点,以D65光源为例),S1、S2分别为两样品颜色的色度坐标点,由白点(O点)向颜色S1引一直线,延长与光谱轨迹相交于L点,由此得到S1的主波长λd=584nm,颜色的主波长大致相当于人眼感知到的颜色色相,表明该宝石颜色大致为黄色色调。线段OS1与线段OL的比,记为Pe=OS1/OL,比值Pe表示兴奋纯度,即主波长的光谱色被白光冲淡的程度。兴奋纯度与颜色的饱和度呈正相关关系。S1点越接近O点,说明该颜色纯度(饱和度)越低,即颜色越不鲜艳。OS1/OL之比值越接近1,表明该宝石的颜色越接近光谱色。刺激值中的Y值大致代表了该颜色的明度。同理,向颜色S2引一直线,延长与光谱轨迹相交,得到λc或记为-λd,表示S2的补色波长。

3.GemDialogue和Gem Set体系

GemDialogue(图1-3-4)体系借助各种颜色标尺(色卡)与宝石颜色进行对比,来描述和评价宝石颜色的三要素。颜色标尺手册是由21张透明的颜色标尺(色卡)及3张色罩组成。21张色标相当于21种色相,囊括了有色宝石主要的色相范围,每张色卡上有每种颜色的10个不同饱和度的带,分别为100、90、80、……10,用来表示颜色彩度由深到浅、直至无色的变化。这些色卡也可重叠起来使用,提供60000多种颜色的比较。色罩为透明黑/灰色、不透明黑/白色及透明褐色等3种,同样也有10个不同饱和度的带,可用它们模拟每种颜色中褐色或黑色的罩(即颜色被褐色或黑色掩盖了多少),用于描述隐藏于颜色中的黑/灰色调或褐色调的强度及不透明宝石。

Gem Set(图1-3-5)体系是用一套与宝石形状相近的塑料片和有色宝石的颜色进行对比的方法。其优点是塑料片的形状与宝石相近,且透明便于比较。缺点是这套体系较大,不便于携带,且塑料片容易老化。GemDialogue的优点是体小便携,但缺乏立体感。

图1-3-4 GemDialogue

图1-3-5 GemSet

二、有色宝长江有色是什么

有色宝长江有色是一个金属材料交易服务平台。

有色宝长江有色专注于金属材料的交易与信息服务。它涉及多种金属材料的买卖,包括铜、铝、锌、铅等常见金属以及稀贵金属。平台不仅提供金属材料的实时交易服务,还致力于提供与金属材料相关的市场咨询、价格动态等信息。此外,有色宝长江有色也致力于金属行业的供应链优化,通过整合上下游资源,提高行业的运作效率。它的主要客户群体包括金属生产商、贸易商、终端用户等,为其提供一个交流合作的平台。

具体来说,有色宝长江有色具备以下几个特点:

1.信息服务全面:提供实时的金属材料价格、市场动态以及相关政策解读等信息,帮助用户了解市场趋势。

2.交易服务便捷:提供在线交易服务,用户可以通过平台完成金属材料的采购和销售。

3.供应链整合优化:通过整合行业资源,提高供应链的运作效率,降低交易成本。

4.数据分析支持:运用大数据技术,对市场进行深度分析,为用户提供决策支持。

总之,有色宝长江有色是一个以金属材料交易为核心的服务平台,旨在提供全面的信息服务和交易服务,优化金属行业的供应链,为行业内的用户提供便捷的交易通道和专业的数据分析支持。它是金属行业的重要服务平台,对于促进金属行业的发展和进步具有重要意义。

三、有色宝长江有色是什么原因

有色宝长江有色主要是由于金属矿藏的分布不均和市场需求变化所致。

一、金属矿藏分布不均

长江有色主要是指有色金属的价格变动。有色金属如铜、铝、锌等,其价格受到矿藏资源分布的影响。我国地域广阔,有色金属矿藏分布不均,这导致了在某些地区的矿产开发成本较高,从而影响其市场价格。而长江有色则反映了一种地域性的金属市场价格现象。这种区域性价格的差异是由地区资源的丰富程度、开发条件以及运输成本等因素决定的。

二、市场需求变化的影响

市场需求的变化也是影响有色宝长江有色的重要因素之一。有色金属在工业、建筑、电子等领域都有广泛的应用。当这些行业的需求量增加时,有色金属价格通常会相应上涨。此外,全球经济形势的变化也会对有色金属市场产生影响,如国际贸易的变动、全球经济周期等都会影响到有色金属的需求和价格变化。特别是在一些新兴产业快速发展的背景下,有色金属的市场需求会呈现出新的变化特点,从而进一步影响有色宝长江有色的价格走势。

三、其他因素的综合作用

除了上述因素外,有色宝长江有色的变化还可能受到政策因素、国际市场影响、环保成本上升等多种因素的影响。政府的相关政策导向和监管措施会直接或间接影响到有色金属行业的生产规模和成本;国际市场的行情及波动会通过进出口贸易影响国内市场的有色金属价格;而随着环境保护意识的提高和环保政策的收紧,有色金属行业所面临的环保成本压力加大也会对价格产生影响。这些因素的综合作用共同构成了有色宝长江有色的复杂变化背景。

综上所述,有色宝长江有色这一现象是由多种因素共同作用的结果,包括金属矿藏的分布不均、市场需求的变化以及其他社会经济因素的综合影响。这些因素的交织使得有色金属的价格波动成为常态,也使得市场对未来价格的走势充满变数。